多边形的内角和说课稿

时间:2022-12-29 05:34:15
多边形的内角和说课稿

多边形的内角和说课稿

作为一名老师,常常要写一份优秀的说课稿,借助说课稿可以让教学工作更科学化。那么什么样的说课稿才是好的呢?以下是小编为大家整理的多边形的内角和说课稿,仅供参考,希望能够帮助到大家。

多边形的内角和说课稿1

各位评委老师大家好,我是来自,我今天说课的题目是《多边形的内角和》。它是人教版,七年级下册第七章第三节的内容,分两课时,我今天说的是第二课时。对本节课我将从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计、教学评价设计六个方面进行阐述。

一、背景分析

1、学习任务分析:

《三角形》这一章章节结构是“与三角形有关的线段”、“与三角形有关的角” 、“多边形及其内角和”、“课题学习镶嵌”。按照传统的教材编写程序,受三角形、多边形、圆顺次展开的限制,这些内容分别设置在不同年级,而新教材是一种专题式设计,以内角和为主题,先三角形内角和,再顺势推广到多边形内角和,最后将内角和公式应用于镶嵌。这样看来“多边形及其内角和”就起到了将知识应用到生活中的桥梁作用。在前一节已经学习了多边形以及多边形的对角线、多边形的内角、外角等概念,三角形是多边形的一种,学生已经掌握了三角形和特殊的四边形(如长方形、正方形)内角和,所以这节课很适合于让学生自己去发现和总结多边形内角和公式。适合采用”教师引导下的自主探究”的教学方法。探索多边形内角和公 ……此处隐藏13786个字……为下一节学习用正多边形铺设地板作好铺垫。

在多边形的对角线这一概念的认识和理解上,应突出它的作用,引导学生观察、发现,由于这种特殊的线段,把多

边形分割成了最基本的图形——三角形,目的是为多边形内角和公式的推导埋下伏笔。

(2)知识探究

为了加深对概念的理解,领会其运用,突出本节课的重点和难点,同时体现新课程标准的精神实质, 在知识探究这一部分,我采取以下两个探究活动充分调动全体学生主动探索多边形的内角和公式:

探究活动1:多边形的对角线

先让学生画出四边形、五边形所有的对角线,再让三个学生上黑板,分别画出四边形、五边形、六边形只从一个顶点出发引出的对角线,其余学生则在下面都画出这三种情况,由动脑到动手,在操作中获取知识。

思考并分小组讨论以下两个问题:①从多边形的一个顶点出发能画出几条对角线?②这样的画法把多边形分成了多少个三角形?

因为多边形内角和公式的推导就是从对角线和三角形入手的,因此,这两个问题就显得尤其重要。引导学生回想课前引入的过程, 图形的转化中对角线有什么作用? 与边数对比,发现什么变化规律,归纳总结出来。

探究活动2:多边形的内角和

这既是本节课的重点, 又是难点, 能不能从以上对角线的问题得到启示呢? 为了紧紧扣住主题, 前后呼应. 我先提出问题:三角形的内角和等于多少度?

四边形的内角和呢?怎样算出?有的学生可能会想到用量角器量一量, 或类似求三角形内角和那样剪下来拼一拼, 有的可能马上就看出四边形被一条对角线分成了两个三角形, 它的内角和就是2×180°……在肯定正确的答案和各种想法的同时,让学生寻找出最优办法。

《多边形的内角和说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式